``` Traceback (most recent call last): File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\train_svd.py", line 1286, in <module> main() File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\train_svd.py", line 1114, in main model_pred = unet( ^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\accelerate\utils\operations.py", line 817, in forward return model_forward(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\accelerate\utils\operations.py", line 805, in __call__ return convert_to_fp32(self.model_forward(*args, **kwargs)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\torch\amp\autocast_mode.py", line 16, in decorate_autocast return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\diffusers\models\unets\unet_spatio_temporal_condition.py", line 463, in forward sample = upsample_block( ^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\MyStuff\Programming\Python\AI\SVD_Xtend\.venv\Lib\site-packages\diffusers\models\unets\unet_3d_blocks.py", line 2351, in forward hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 2 but got size 1 for tensor number 1 in the list. ``` I get this error whenever i try to run the script. These are the arguments i use ```accelerate launch train_svd.py --pretrained_model_name_or_path=stabilityai/stable-video-diffusion-img2vid-xt-1-1 --per_gpu_batch_size=2 --gradient_accumulation_steps=1 --max_train_steps=5000 --width=10 --height=10 --checkpointing_steps=1000 --checkpoints_total_limit=1 --learning_rate=1e-5 --lr_warmup_steps=0 --seed=123 --mixed_precision="fp16" --validation_steps=200``` (Using low resolutions to avoid out of vram issues while testing, same issue happens at higher resolutions too, was not able to run with default resolution on my pc) Any idea what is causing the error?
This issue appears to be discussing a feature request or bug report related to the repository. Based on the content, it seems to be resolved. The issue was opened by SwayStar123 and has received 7 comments.